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Abstract. Based on recent studies of the temperature dependence of the energy and specific heat of liquid
nuclear matter, a phase transition is suggested at a temperature ~ 0.85 MeV. We apply the Landau-
Ginzburg theory to this transition and determine the behaviour of the energy and specific heat close to

the critical temperature in the condensed phase.

PACS. 21.65.4+f Nuclear matter — 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.)

The existence of an energy gap in the spectrum of even-
even nuclei due to paired states of either protons or neu-
trons [1] similar to that described by Bardeen, Cooper and
Schrieffer (BCS) for electrons in a superconductor [2] has
led to the suggestion that nuclear matter should also exist
in a condensed phase for some range of temperatures [3].
The properties of this superfluid phase in both nuclear and
neutron matter have been studied in the BCS approxima-
tion using a variety of phenomenological forces [4] as well
as more realistic interactions [5]. Remarkably, all calcu-
lations yield qualitatively similar results for 'Sy pairing,
namely that neutron matter exists in a condensed phase
for kp less than about 1.3-1.5 fm~!. Recent calculations,
using the Paris potential [6], by the Catania group [7] have
shown that only slight deviations occur in nuclear matter.
Such modifications, which can be characterized by the use
of a smaller nuclear effective mass in the case of nuclear
matter, are known to give rise to a slight decrease in the
gap, A which vanishes at a temperature around 0.8 MeV
at normal nuclear density. Although such calculations sug-
gest that such a low-temperature phase should exist in
both nuclear as well as neutron matter this has not been
taken into account in, for example, astrophysical calcula-
tions since it is thought that it may be masked by other
instabilities [8].

In field-theoretic language BCS theory is considered as
the spontaneous symmetry breaking of phase symmetry.
The condensed phase, e.g., the superconducting phase, is
characterized by an order parameter (A) which is zero at
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the critical temperature, T.. It has been established that
the order parameter and the critical temperature fulfill
the following approximate relationship [9]:

Ay

T~ 1.76, (1)
where Ay is the value of the energy gap at 7' = 0 and here
we have taken the Boltzmann constant kg = 1. In the
normal phase the order parameter is zero. Interestingly
enough the same relationship has been found to hold in
the aforementioned calculations in nuclear matter [7]. Fur-
thermore, it has been pointed out that the same relation
between Ay and T also describes the spontaneous symme-
try breaking of chiral symmetry in QCD if T, is taken to
be 2f, [10], where f, is the pion decay constant. In all of
the aforementioned cases the order parameter is obtained
from a gap-like equation with appropriate quasi-particle
interactions.

Recent studies of nuclear matter have suggested that
the origin of collective states may ultimately be linked to
symmetry rearrangement [11]. This leads to a BCS-like
condensed phase, separated from the normal phase, which
has an order parameter that goes to zero at the critical
temperature. Calculations in finite nuclei at finite temper-
ature suggest that this provides a reasonable description
of the vanishing of the collective degrees of freedom [12].

Recently it has been demonstrated that the low-
temperature behavior of the specific heat of symmetric
nuclear matter can be obtained from a finite-temperature
extension of the semi-empirical mass formula [13]. The
temperature dependence of the coefficients in the semi-
empirical mass formula [14] was determined by fitting to
the canonical ensemble average of the excitation energy of
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over 300 nuclei for temperatures T' < 4 MeV, using exper-
imental information of the energy spectra of nuclei in the
mass region 22 < A < 250. The volume term was then
used to determine the temperature dependence of the en-
ergy per nucleon and specific heat of nuclear matter. This
displayed some rather interesting aspects: A structure in
both the energy and the specific heat was observed at
temperatures between 0.5 and 1.3 MeV (the structure in
the specific heat is of course more pronounced). Below
this temperature the behaviour of the specific heat was
quite different from that expected for a Fermi gas of free
nucleons [13]. This is not unexpected as the low-lying en-
ergy spectra of most nuclei are predominantly collective in
nature. Above 1.3 MeV, the specific heat was essentially
linear in temperature as is the case for a Fermi gas, but
with the somewhat surprising feature that the slope coef-
ficient was considerably larger than that suggested by the
Fermi gas bulk level density parameter,

ay~ — 2

1 *
15 m’ )
which was obtained from a low-temperature expansion
about T = 0 [15]. Here it was assumed that m* =
(0.7 —1.2)m [16].

In this paper we intend to investigate the aforemen-
tioned matters from the point of view of the Landau-
Ginzburg theory. We propose that there is a second-order
phase transition in liquid nuclear matter with a criti-
cal temperature T, and an order parameter 1. The criti-
cal temperature separates the condensed and the normal
phases of the liquid. We apply Landau-Ginzburg theory
to determine the thermodynamic properties of the con-
densed phase close to T¢, from information about the nor-
mal phase. We find that the behaviour of the energy per
nucleon and specific heat across the phase transition with
T. ~ 0.85 MeV to be consistent with that shown in [13].

Landau and Ginzburg have provided a simple theory
of phase transitions which approximates the free energy
in the region around 7, and is most useful in analyzing
the thermodynamics in this region. In particular, using
only knowledge about the uncondensed phase one is able
to make predictions about quantities in the condensed
phase, such as specific heat, magnetic susceptibility and
compressability. Moreover, Landau-Ginzburg theory can
be derived from microscopic considerations [9)].

Following the Landau-Ginzburg formulation it is nec-
essary first to determine an expression for the free en-
ergy per nucleon f(T) in both phases. In what follows
the subscript 1 will refer to the lower temperature (con-
densed) phase, and 2 to the higher temperature (uncon-
densed or normal) phase. For the uncondensed phase, we
take a quadratic form for the energy per nucleon which
follows from a low temperature Fermi gas approximation
of a normal Fermi liquid,

W2 (T) =ag + k2T2, (3)

where as and ks are constants. From the relations for the
specific heat per nucleon in terms of W and the entropy

per nucleon s,

ow s
=—=T— 4
cv T 6T7 ( )
we are able to deduce the entropy per nucleon in the un-
condensed phase,

SQ(T) = Cs + 2koT, (5)

where Cs is an unknown integration constant which later
cancels out of the calculation. From egs. (3) and (5) the
free energy per nucleon in the higher temperature phase
is given by

f2(T) = ag — CoT — ko T2, (6)

To determine the free energy per nucleon in the con-
densed phase, we make use of the Landau expansion [17]
for the free energy per nucleon in terms of an order pa-
rameter 7, which goes to zero at the transition to the un-
condensed phase. This order parameter is related to the
presence of pairing expected at lower temperatures and
vanishes with the pairing gap A at some critical temper-
ature 7. The free energy per nucleon expansion to order

n? is

fi(T.n) = fo + An* + Bn™. (7)

Here A and B are functions of temperature and we have
assumed that the states with n = 0 and n # 0 are of
different symmetry. In this case it can be shown the linear
term in n must be set equal to zero. Furthermore if the
critical point is also a stable point, e.g., if f; as a function
of 1 is a minimum at 7 = 0, then the third-order term in
7 should be zero and at the critical point [17]

A=0, B>0.

The order parameter is determined by requiring the con-
densed phase to be stable below Tt (i.e. f1 should be min-
imized w.r.t. ). This leads to

AZ
f1:f2—ﬁ~ (8)

Further, since A is of opposite sign in the condensed and
uncondensed phases, whilst B is strictly positive [17], the
lowest-order expansion of A in T'—T, can be parametrized
as

A(T) = a(T - Tc) 2 B(Tc)- (9)
Note especially that a > 0 is an essential requirement
following from the phase diagram [17]. Substituting for
A(T), the free energy per nucleon near T, is given by

f1(T) = (ag — a*T?) + (26T, — Co)T — (ko + a*)T?,
(10)

where f5 is taken from eq. (6).
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Fig. 1. The energy per nucleon of symmetric nuclear matter
vs. T obtained ref. [13].

From the free energy per nucleon given by eq. (10),
we can now determine the energy per nucleon in the con-
densed phase near T,

Wl(T) = (ag — (12T(32) + (a2 -+ kz)Tz
= a1 + k1T2.

(11)
(12)

Comparing this to the uncondensed phase (eq. (3)) we
note that the T dependence is also quadratic, but has a
larger coefficient. Thus the specific heat is discontinuous
across the phase transition, and is necessarily larger (kq >
k2) in the condensed phase.

We now compare the structure of Wy (T) and Wy (T')
to what has been determined from the finite temperature
extension of the semi-emperical mass formula [13]. Before
proceeding, it should be noted that the energy per nu-
cleon in nuclear matter is obtained from the volume term
of the binding energy for finite sized nuclei whose inivid-
ual partition functions are analytic. It may be anticipated
that any sharp features (e.g., kink in the energy per nu-
cleon and discontinuity in specific heat Acy) will appear
smoothed out. Thus whilst comparison is still possible at
a qualitative level, it is difficult to obtain quantitative es-
timates for the critical temperature and the discontinuity
in the specific heat.

In the region (0.50-1.3 MeV) the energy per nucleon
from [13] is observed to show a peak above the simple
T? behavior (see fig. 1). This is in good agreement with
what might be expected from a smoothed out downwards
kink in W at T, which follows from eqgs. (3) and (12).
Furthermore, the specific heat (see fig. 2) in [13] shows a
sharp drop in the region (0.5-1.3 MeV) which agrees well
with a smoothed out discontinuous drop (= 2(ky —k2)T¢).
It should be noted that the specific heat above 1.3 MeV
is very nearly linear, supporting the use of a quadratic
temperature dependence of W5, and that the slope below
0.5 MeV is greater than that above 1.3 MeV, which is
in good agreement with our prediction that k; > ks. In
fig. 1, ko is determined from the fit in [13] to the uncon-
densed phase parameters for the energy per nucleon given
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Fig. 2. The specific heat per nucleon of symmetric nuclear
matter vs. T. The solid curve has been obtained from ref. [13].
The dashed curve is obtained from Landau-Ginzburg theory
with ko = = MeV™! and T. = 0.85 MeV. For illustrative
purposes the condensed phase specific heat asymptote (T —
T¢) is shown for k1 = 2ks.

in eq. (3), of ks = 1/6.7 MeV~! and a; = —16 MeV.
In addition, we took T, ~ 0.85 MeV and for purely il-
lustrative purposes have shown a possible asymptote line
(T — T.) for the specific heat in the condensed phase
when k1 = 2k,.

If we treat the uncondensed phase as a Fermi gas of
quasi-particles with a Landau mass mp, ~ m, based on
the linear behaviour of the specific heat, we can estimate
the jump in specific heat at the transition to a condensed
phase, where there is pairing with an associated energy
gap A. This is given by [9],

Acy ~ 1.43cy, (13)
where cy is the specific heat per nucleon in the uncon-
densed phase. Using ko = 1/6.7 MeV~! and assuming
T. ~ 0.85 MeV we find Acy ~ 0.36, which is in remark-
ably good agreement with the behaviour of the specifc
heat per nucleon shown in fig. 2.

At temperatures considerably higher than T, the en-
ergy per particle given by eq. (3) will become positive.
It is reasonable to identify this with a transition from
a Fermi liquid to a Fermi gas, at temperature Tr,g. Us-
ing eq. (3) with the fitted parameters as and ko taken
from [13], we estimate this transition temperature to be
at Ti,g =~ 10 MeV. This compares favourably with T1,¢ ~
15-20 MeV in [18] and Ti¢ = 5 MeV (finite nuclei) [19].

It is established that there are three phases of the nu-
clear matter: the condensed liquid phase, the normal lig-
uid phase and the gas phase. The thermodynamic proper-
ties of the condensed phase near T, are determined from
the properties of the normal phase by using the Landau-
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Ginzburg theory. The transition from condensed to normal
liquid is a second-order phase transition while the liquid
to gas is a first-order phase transition. A study of the nu-
clear matter at zero temperature must include the ramifi-
cations of a condensed phase. The normal phase is present
only between the two critical temperatures. Clearly the en-
ergy per nucleon obtained in [13] at temperatures above
1.3 MeV is much stiffer than that of a Fermi gas of free
nucleons, which is often used in many astrophysical calcu-
lations [8] which in turn should affect neutrino production
rates in stars. As this is the major cooling mechanism in
these objects it would be interesting to see precisely how
important this deviation is.

Lack of experimental data on nuclear matter at finite
temperature makes further refinement of the model diffi-
cult. Experimental determination of the thermodynamic
properties in heavy-ion collisions would be extremely help-
ful for understanding the properties of nuclear matter at
finite temperature.
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